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Application of Sonie–Schafheitlin Formula and Sampling
Theorem in Spectral-Domain Method

Ban-Leong Ooi, Pang-Shyan Kooi, and Mook-Seng Leong

Abstract—In this paper, the Sonie–Schafheitlin integration formula and
the sampling theorem are integrated into the conventional spectral-domain
method to form an efficient and fast convergent hybrid method. As a simple
demonstration of the method, the novel technique is applied to the mi-
crostrip dispersion problem. The incorporation of the Sonie-Schafheitlin
integration formula and the sampling theorem aid to accelerate the conver-
gence of the Sommerfeld integral. Good agreement between the simulated
results and the conventional method are obtained.

Index Terms—Sampling theorem, spectral-domain method.

I. INTRODUCTION

The accuracy of the results obtained by the conventional spectral-do-
main method [1], [2] heavily depends on the accuracy by which the
elements of the impedance matrix are evaluated, especially for open
structures where these elements are improper integrals with very highly
oscillatory tails. Lately, explicit efforts [1]–[4] has been expended in
looking for accelerating techniques for fast convergence of the Som-
merfeld integral in the spectral-domain method [5]. All these methods
require the computation of the Bessel or modified Bessel functions of
order greater than one. Hence, they are not efficient in terms of the nu-
merical computation time taken.

In this paper, we propose a modified and fast version of the Uchida
method [4] in that, instead of using the higher order spherical Bessel
function, only the zeroth-order spherical Bessel function is adopted.
By selectively changing the argument of the zero Bessel function such
that the zero crossing is identical with the basis function, the integration
limit of the residue term of the impedance integral can be made compact
and finite. This residue term, which is the substraction of the original
impedance integral and the asymptotic term, can be quickly evaluated
by any numerical techniques, e.g., [6]. With the Sonie–Schafheitlin in-
tegration formula [7] and the sampling theorem, the asymptotic term
can be analytically evaluated and the impedance matrix can be made
sparse. To validate this new approach, the effective dielectric constant
of an open microstrip line is determined and compared to data from the
literature. Excellent agreement is documented, along with a consider-
able reduction in CPU time.

II. FORMULATION OF THE PROBLEM

Fig. 1 shows the geometry of the problem, where it is assumed that
the thickness of the strip and the metallic ground is negligibly small
and the substrate dielectric is lossless.

In contrast with the conventional Galerkin-type spectral-domain
method [5], we impose an alternate representation of the boundary
condition on the tangential electric fieldon the metallic strip through
the following expression:
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~E(x; y; z = d)p(x)q(y) e�j(� x+� y) dx dy = 0

(1)
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Fig. 1. Geometry of the problem.

wherep(x) and q(y) are compact functions that assume zero value
outside the metallic strip. The selection of these compact functions are
quite arbitrary. For simplicity and convenience, we let

p(x) =
1; jxj � Wp

0; elsewhere
q(y) =

1; jyj � Lm
0; elsewhere

where2Lm is set to one free-space wavelength (see Fig. 1),Wp =
Wm=p with p = 1; 2; 3 . . . ; andWm is equal to half of the width
of the microstrip line. By taking into account the singularities of the
surface currents near the edges of the strip, and following the method
as in [4] and [5], one would easily arrive at

1

�=0

A�H1(km; �; Wp) +B�H2(km; �; Wp) = 0

1

�=0

A�H3(km; �; Wp) +B�H4(km; �; Wp) = 0 (2)

whereWp = Wm=p for n = 2; 3 . . .,

H1(km; �; Wp) =
1

0

~Gxx(km; �)J�+1(Wm�)j0(Wp�) d�

Wm�

8 � = 0; 2; 4; . . .

= 0 8 � = 1; 3; 5; . . .

H2(km; �; Wp) =
1

0

~Gxy(km; �)J�(Wm�)j0(Wp�) d�

8 � = 1; 3; 5; . . .

= 0 8 � = 0; 2; 4; . . .

H3(km; �; Wp) =
1

0

~Gyx(km; �)J�+1(Wm�)j0(Wp�) d�

Wm�

8 � = 1; 3; 5; . . .

= 0 8 � = 0; 2; 4; . . .

H4(km; �; Wp) =
1

0

~Gyy(km; �)J�(Wm�)j0(Wp�) d�

8 � = 0; 2; 4; . . .

= 0 8 � = 1; 3; 5; . . . : (3)

The term2j0(kmLm), which appears in all the series terms in (2),
has been eliminated. The unknown propagation constantkm of the mi-
crostrip-line mode is solved in such a way that the determinant of (2) is
zero, and the unknown coefficients of the expanded surface currents can
also be determined as an eigenvector. In our method, one can tabulate
and store the value forj0(Wp�) in the memory and use it throughout
the program. As the resulting impedance is sparse, special techniques
like Chio’s pivotal condensation method and the Laplace expansion [8]
can be used.
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III. N UMERICAL METHOD

To solve the integrals in (3) precisely and without much computation
time, the Sonie–Schafheitlin integration formula [7] is utilized for the
asymptotic integral. The conventional asymptotic forms of the Green’s
functions are not used, as this would lead to a singular integrand at the
origin for the zeroth-order Bessel function [3]. We propose to use the
following expressions for the asymptotic Green’s functions:

~G1 =
�j!�

k21(1 + �1�o)

� �

�
�k21(1 + �1�o) + 2�2

2�

: (4)

For brevity, only theZxx
�n of (3) is given as follows:

Zxx
�n =

x

0

~Gxx �
~G1xx J�+1(Wm�)j0(Wp�) d�

Wm�

+
1

0

~G1xxJ�+1(Wm�)j0(Wp�) d�

Wm�
: (5)

The asymptotic terms of (3),Zij
�a with i; j = x; y, can, in general, be

rapidly solved by the Sonie–Schafheitlin integration formula [7], which
is given as follows:
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0

J�(t�)J�(t�)t
�� dt

=

���
�+ � � �+ 1

2

2�����+1�(� + 1)�
�� � + �+ 1

2

� 2F1 �+ � � �+ 1

2
;
� � �� �+ 1

2
; � + 1;

�2

�2

(6)

where0 < � < �, Re(� + �� �+ 1) > 0, andRe(�) > �1. In our
derivation, it is found that the parameterc in the hypergeometric func-
tion 2F1(a; b; c; z) is always equal to 3/2. The hypergeometric func-
tion 2F1(a; b; (3=2); z) can be evaluated by (7), shown at the bottom
of this page. However, in our proposed approach, we have refrained
from using the associated Legendre function, as the evaluation can be
very time consuming. We have, instead, adopted the following forms
for the asymptotic integrals in (2):
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0

~G1xxJ�+1(Wm�)j0(Wp�) d�

Wm�

=
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1

0
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=
�j!�p�� �
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� + 2

2
�

3

2

� f2k2m � k21(1 + �1�o)g

� cos � sin�1
Wp
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+

�Wm sin (� � 1) sin�1
Wp

Wm

Wp(� � 1)
: (8)

For� = 0, the fourth integral of (8) is no longer valid and should be
replaced by [8]

1

0

~G1yyJ0(Wm�)j0(Wp�)d�

= �j!�WmK0(�) 2k2m � k21(1 + �1�o)

sinh
Wp�

Wm

2k21�Wp(1 + �1�o)

(9)

where� is an arbitrary real number,K�(z) is the modified Bessel func-
tions of the second kind, and

~G1yy =
�j!�(2k2m � k21(1 + �1�o))�

2k21(1 + �1�o) �2 +
�

Wm

2
:

Closed-form equations (8) and (9) are obtained by recursively applying
the Gauss’s relations for contiguous hypergeometric function. Except
for the constantkm in (8) and (9), these closed-form expressions are
evaluated only once at the beginning of the program and stored in the
computer’s memory. We have intentionally selectedn = 2; 3; . . . ; in
(2) because (6) is valid for0 < � < �.

2F1 a; b;
3

2
; z =

2
a+b�(5=2)�(a�(1=2))�(b�(1=2))(1�z) P

((3=2)�a�b)
(a�b�(1=2)) (�

p
z) + P

((3=2)�a�b)
(a�b�(1=2)) (

p
z)

p
z�

(7)
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Fig. 2. Typical variation of the complex integrand ofZ in (3) for � = 0,
p = 2, � = 8, (W =H) = (1=2), andf = 11:8 GHz (dashed–dotted
line: the original integrand without the asymptotic subtraction, solid-line: the
integrandZ ).

Fig. 3. Typical variation of the complex integrand ofZ in (3) for � = 1,
p = 2, � = 8, (W =H) = (1=2), andf = 11:8 GHz (dashed–dotted
line: the original integrand without the asymptotic subtraction, solid-line: the
integrandZ ).

IV. NUMERICAL RESULTS

Figs. 2–5 show, respectively, the variations of the integrandZxx

�a ,
Zxy�a , Zyx�a , andZyy�a with their original integrands that are without the
asymptotic substraction. As noticed from these figures, the proposed
approach leads to a faster convergence as compared to its original con-
ventional form. A similar trend is also noted for� > 1, but for brevity,
these integrands are not shown. In our experimentation, it is found that
an upper limit of50�=Wp is sufficient to ensure an accurate evaluation
of the integral. Compared with the upper limit in [9], which is given as
�u = ((1:5�103)=Wm), our present method significantly saves much
computation time in the numerical integrations.

Fig. 6 compares the convergence rate of the residue term in [3],
which is duplicated as follows:

1

0

~Gxx �
~G1xx J2�+1(Wm�)

Wm�
d� (10)

with our proposedZxx�a . Here,� is taken as ten and this comparison is
done on the basis thatZxx�a and (10) occupy the same matrix element

Fig. 4. Typical variation of the complex integrandZ in (3) for � = 1,
p = 2, � = 8, (W =H) = (1=2), andf = 11:8 GHz (dashed–dotted
line: the original integrand without the asymptotic subtraction, solid-line: the
integrandZ ).

Fig. 5. Typical variation of the complex integrandZ in (3) for � = 0,
p = 2, � = 8, (W =H) = (1=2), andf = 11:8 GHz (dashed–dotted
line: the original integrand without the asymptotic subtraction, solid-line: the
integrandZ ).

position. As shown from the figure, our approach has a faster decaying
envelope than that in [3]. The selection of the zeroth-order spherical
Bessel function withp as the only degree of freedom has caused the tail
of the original integrand to diminish faster than using the Bessel func-
tion. A similar trend has also been observed for all the other impedance
matrix elements, but for brevity, they are not shown in this paper. By
makingp the varying element in this non-Galerkin method, the need to
evaluate the spherical Bessel function of an order higher than zero, as
in [4], is removed. As such, the computation time will improve signif-
icantly.

A program written in MATLAB 5 is used to implement the algo-
rithm for the microstrip dispersion problem. The quasi-static effective
permittivity is computed as an initial guess and the Newton method
is used to find the root of the characteristic equation representing the
dominant mode. The effective dielectric constant of a microstrip line of
aspect ratio2Wm=H = 1 was determined for different values of the
ratioH=�0. Table I summarizes the results obtained from this paper
and those presented in [3] and [10]. Here, five basis functions are taken
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Fig. 6. Comparison ofZ and (10).� = 10, p = 10, � = 8,
(W =H) = (1=2), and f = 11:8 GHz (dashed–dotted line: for (10),
solid-line: our proposed methodZ ).

TABLE I
EFFECTIVE DIELECTRIC-CONSTANT COMPARISON WITH � = 8,

2W =H = 1, and� = 1

for bothJx andJy. The agreement between this paper and that pre-
sented in [3] is excellent. The total time taken to compute the effec-
tive dielectric constant for the case ofH=�o = 1 is 4 s on a Pentium
400-MHz personal computer.

V. CONCLUSION

In this paper, the Sonie–Schafheitlin integration formula and the
sampling theorem have been integrated into the conventional spec-
tral-domain method to form an efficient and fast convergent hybrid
method. Closed-form asymptotic integrals are first derived without in-
troducing any numerical pathologies and complexities. Numerical re-
sults obtained from this approach agree very well with those reported
in the literature. A substantial reduction in CPU time is also achieved
using this formulation.
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Scattering Matrices Representing the Transformations
Between Modal Bases in Rectangular Waveguide

A. Morini, T. Rozzi, and L. Zappelli

Abstract—The excitation of hybrid modes by discontinuities in rect-
angular waveguide can often be decomposed into separate LSE/LSM or
TE/TM mechanisms, so that each component can be analyzed with the
most suitable modal base. Correct interfacing, however, is required. We
report the scattering matrices representing all the possible transforma-
tions of modal bases in rectangular waveguide. Such matrices provide an
useful tool to simulate complex circuits made up of components strongly
interacting, without requiring the use of a common modal base for the
characterization of each element. Since the transformation matrices can
easily include pieces of transmission lines, their use does not require any
additional computation effort.

Index Terms—Mode matching, rectangular waveguides.

I. INTRODUCTION

The electromagnetic (EM) field into a rectangular waveguide can be
expanded into three different sets of modes, namelyH andE types
with respect tôx, ŷ, andẑ (the latter are the classical TE/TM modes).
However, although in principle any one is equivalent to another, in prac-
tical use, the analysis and computation effort required to characterize
monodimensional discontinuities, such as T/Y-junctions, inductive or
capacitive posts and windows, bends, tapers, and so on (see Fig. 1) is
strongly reduced when the most appropriate set is used [1]. The latter
is the one whose modes are derived from two potentials (H andE)
parallel to the axis of the discontinuity (that is, the one with respect to
which the discontinuity is uniform). As a consequence, the complete
analysis of the discontinuity can be performed considering separately
the two families of modes (E andH), as not being coupled at all by
the discontinuity.

Consequently, the EM problem posed by such structures reduces to
a scalar one, as the continuity condition at the discontinuity interface
involves only one potential directed along one coordinate and its first
derivative at a time.

On the other hand, in complex structures, there are many discontinu-
ities and components connected together and often strongly interacting
through higher order modes. A classical example of this situation is of-
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