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Application of Sonie—Schafheitlin Formula and Sampling POOY)
Theorem in Spectral-Domain Method
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Abstract—n this paper, the Sonie—Schafheitlin integration formula and
the sampling theorem are integrated into the conventional spectral-domain
method to form an efficient and fast convergent hybrid method. As a simple Qbarate
demonstration of the method, the novel technique is applied to the mi-
crostrip dispersion problem. The incorporation of the Sonie-Schafheitlin
integration formula and the sampling theorem aid to accelerate the conver-
gence of the Sommerfeld integral. Good agreement between the simulated Fig. 1.

Geometry of the problem.
results and the conventional method are obtained. y P

Index Terms—Sampling theorem, spectral-domain method. wherep(x) and¢(y) are compact functions that assume zero value

outside the metallic strip. The selection of these compact functions are

I. INTRODUCTION quite arbitrary. For simplicity and convenience, we let
The accuracy of the results obtained by the conventional spectral-do- (x) = 1, || <W, ) = 1, ly| < L.
main method [1], [2] heavily depends on the accuracy by which the 10, elsewhere o, elsewhere

elements of the impedance matrix are evaluated, especially for open . .
structures where these elements are improper integrals with very hig ere2L_,,,, Is set to; one free-spac/ve vyavelength (see F'gm')'.:
oscillatory tails. Lately, explicit efforts [1]-[4] has been expended i,/ With » = 1.2.3.... and V., is equal to half of the width
looking for accelerating techniques for fast convergence of the Soﬂf—the microstrip line. By taking into accognt the smgu!anﬂes of the
merfeld integral in the spectral-domain method [5]. All these metho&é‘r.face currents near the edge; of th_e strip, and following the method
require the computation of the Bessel or modified Bessel functions Bt " [4] and [3], one would easily arrive at
order greater than one. Hence, they are not efficient in terms of the nu-
merical computation time taken. > |:A1/Hl(]"mﬁ v, W) + B, Ha (kv v, Wp)} =0

In this paper, we propose a modified and fast version of the Uchida »=°
method [4] in that, instead of using the higher order spherical Bessel =
function, only the zeroth-order spherical Bessel function is adopted. Z |:A1/H3(krn3 v, Wp) + BLHa(kpm, v, Wp)} =0 2
By selectively changing the argument of the zero Bessel function such »=0
thatthe zero crossing is identical with the basis function, the integratigihereiy, = 1, /p forn = 2, 3.. .,
limit of the residue term of the impedance integral can be made compact
and finite. This residue term, which is the substraction of the original . (o0 é“(k,,“ a)Jppt W) jo(Wya) da
impedance integral and the asymptotic term, can be quickly evaluatedH 1 (ks v, W) = /0 Wona
by any numerical techniques, e.g., [6]. With the Sonie—Schafheitlin in- Yr=0,24,...
tegration formula [7] and the sampling theorem, the asymptotic term -0 Vy=1.35
can be analytically evaluated and the impedance matrix can be made SR
sparse. To valllidate.thi.s ngw approgch, the effective dielectric constanng( ferms v, W) = /°C éo:y(krn, )Ty (W) jo (Wpa) da
of an open microstrip line is determined and compared to data from the 0

literature. Excellent agreement is documented, along with a consider- Vv=1,3,5,...
able reduction in CPU time. =0 Yr=0,24,...
Il. FORMULATION OF THE PROBLEM Hi(kp, v, W) :/ Gy (k. a)J”J’le(,W"la)jompa) da
0  m QL
Fig. 1 shows the geometry of the problem, where it is assumed that Yr=1,35,...

the thickness of the strip and the metallic ground is negligibly small
and the substrate dielectric is lossless.

In contrast with the conventional Galerkin-type spectral-domain Ha(km, v, W) = /xé‘yy(lam. )Ty (Wina)jo(Wia) da
method [5], we impose an alternate representation of the boundary 0 :

=0 Vv=0,24,...

condition on the tangential electric fietth the metallic strip through Yv=0,24,...
the following expression: =0 VYv=135,.... 3)
R By = : —i(a oY) The term2jo (kL. ), Which appears in all the series terms in (2),
E(x, y, = = d)p(x)q(; HCT ) G dy = =0 : :
/_x /_OQ{ (@ 9, 2 p( L)Q(y)}e vdy =0 has been eliminated. The unknown propagation constardf the mi-

(1) crostrip-line mode is solved in such a way that the determinant of (2) is
zero, and the unknown coefficients of the expanded surface currents can
also be determined as an eigenvector. In our method, one can tabulate

Manuscriot received August 10. 1999 and store the value fgih (17, «) in the memory and use it throughout
The authcr))rs are with thegDepart’ment c;f Electrical Engineering, The Natior{glle prqgram. As the resultm_g impedance is sparse, special techmques

University of Singapore, Singapore 119260. like Chio’s pivotal condensation method and the Laplace expansion [8]
Publisher Item Identifier S 0018-9480(01)00014-X. can be used.
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1. N UMERICAL METHOD /'°° G2 Ty i1 (W) jo(Wya) da
0

To solve the integrals in (3) precisely and without much computation Wnar

time, the Sonie—Schafheitlin integration formula [7] is utilized for the —juopthm /7T v+1
asymptotic integral. The conventional asymptotic forms of the Green’s JEREm T

2
functions are not used, as this would lead to a singular integrand at the ‘ 3 v +3
o : AW, (v + 2)K2(1 r(2)r(2t
origin for the zeroth-order Bessel function [3]. We propose to use the T (v + 2)k (14 €1e0) B} B
following expressions for the asymptotic Green'’s functions:

jon o 8 (W,
G®| = 8 2 a2 | . (4 - cos |:(1/+1)sin7 < = >:|
[ ] k2(1+ e1€0) 3 —ki(1+ee) +28 4) W..
2
For brevity, only theZ;Z of (3) is given as follows: Wi (v + 1) sin {V sin— 1 GIM )}
e [ (G - 0”) Joir(Wina)jo(Wya) da + i
vn — /0 V‘Yma
n / GZedvp (Ir{;},;a)]oﬂ/v,,a) do(. (5) / é:zjy(vack)jo(VVpct) o
0 m Q& 0

.. . 14
The asymptotic terms of (3f,7, with 4, j = =, y, can, in general, be _ —jwpy/xLC (5)
rapidly solved by the Sonie—Schafheitlin integration formula [7], which - D) 3
is given as follows: 16k (1+€re,) (v +1)T < 5 ) r <§)

/ Ju(ta)J, (t3)t ™ dt {2k — k(14 e1e0)}
9]
o BV —=A+1 -
BT <f) - < cos |:I/ sin”" <I‘;I/'p )}
2’\Q/V_’\+1 F(V + 1)1‘* <l1 4 -2|- A + 1)
5 vWh, sin |:(1/ —1)sin* <”,p >:|
pt+v—A+1 v—A—pu+1 8 Vo
2h < 2 ’ 2 vt los * W,(v—1) : (8)
(6)

Forv = 0, the fourth integral of (8) is no longer valid and should be

whered < # < a,Re(v +p — A+1) > 0,andRe(A) > —1. In our replaced by [8]

derivation, it is found that the parametein the hypergeometric func-
tion o Fy(a, b; ¢; z) is always equal to 3/2. The hypergeometric func-y> _ o
tion o Fy (a, b; (3/2); z) can be evaluated by (7), shown at the botto Gy Jo(Wina)jo(Wpa) do

of this page. However, in our proposed approach, we have refrained Wor

from using the associated Legendre function, as the evaluation can be ‘ sinh < W{) )

very time consuming. We have, instead, adopted the following forms = —jwuW,, Ko(x) (Zkfn (14 e €0) ) gt
2krW,(1 4+ €1€5)

for the asymptotic integrals in (2):

N )
/00 G T (W) jo(Wpa) da
9]

Woa wherex is an arbitrary real numbek, (=) is the modified Bessel func-
e tions of the second kind, and

—jwp/T sin |:(u + 1)sin™?t <:;ip ):|

G —_—den(2R — B+ ae))a

= vy 2\
2r @) E2(14 ere,) W Wi (v + 1) 2k (1 + €1€a) (az + <%) )
/oo G2 T, (Wma)jo(Wya) da Closed-form equations (8) and (9) are obtained by recursively applying
0 the Gauss'’s relations for contiguous hypergeometric function. Except
ouk . { - <Wp )} for the constant:,,, in (8) and (9), these closed-form expressions are
—Jjwptkm /T sin |v sin _ i )
_ Wi evaluated only once at the beginning of the program and stored in the
- oW K2 (1 r 3 computer’s memory. We have intentionally selected: 2. 3, ..., in
vWphi(l+ee)l'{ 5 (2) because (6) is valid faF < 4 < o
atb—(5/2)'(a— oV (b— < _)((3—2a—2b)/4) 3/2)—a—b) , 3/2)—a—b
3 2T (/2= A2PHe= /)02 {P(((,(i/bz_)(1/2))) (=V2)+ P((a(i/zﬂu/z))) (\/E)}
oF  [a, by =5 2 ) = @)
2 LS
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Fig. 2. Typical varigtion of the complex in;egrandﬁfj in (3) forv = 0, Fig. 4. Typical variation of the complex integrariy® in (3) forv = 1,
1.) = 2,6 : 8, _(W’m/H) = (1/2), andj = 1‘1.8 GHz (Qashed_—d(_)tted p = 2, ¢, = 8, ("1”m/H) — (1/2)’ andf — 11.8 GHz (dashed—dotted
line: the original integrand without the asymptotic subtraction, solid-line: théye: the original integrand without the asymptotic subtraction, solid-line: the

integrandZz=). integrandZ¥?).
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Fig. 3. Typical variation of the complex integrand Bf¢ in (3) forv = 1,
p=2¢ =8 (W,./H)=(1/2),andf = 11.8 GHz (dashed—dotted
line: the original integrand without the asymptotic subtraction, solid-line: theig, 5. Typical variation of the complex integratyy in (3) for v = 0,
integrandZ;¥). p=2¢e =8 (W,/H) = (1/2),andf = 11.8 GHz (dashed—dotted

line: the original integrand without the asymptotic subtraction, solid-line: the
integrandZ¥?).

IV. NUMERICAL RESULTS

l.'z'gs'yf_s shoyv:, r(_aspect_lvel)_/, _the _vanauons of the mtegrﬂ;jg], position. As shown from the figure, our approach has a faster decaying
Zvi Z”“Z andZy; W'.th their ong_mal integrands that are without theen elope than that in [3]. The selection of the zeroth-order spherical
asymptotic substraction. As noticed from these flgures,_the _pr_opos§é};se| function wittp as the only degree of freedom has caused the tail
appr_oach leads to gfgster convergence as compared fo its orlglnal G'the original integrand to diminish faster than using the Bessel func-
ventlo_nal form. A similar trend is also noted fpr> L, b!“ for k_’re"'ty* tion. A similar trend has also been observed for all the other impedance
these integrands are not shown. In our experimentation, it is found t trix elements, but for brevity, they are not shown in this paper. By
an upper limit o507 /W is sgfﬁcient 0 ensure an accurgte ?Va_luatio%akingp the variling elementin ’this non-Galerkin method, the need to
of the '”te9ra" g:omeared with the upper I|m|t_|n [9] which is given A3valuate the spherical Bessel function of an order higher than zero, as
Gu = ((1'.‘) X 1.0 )/.W/"’)’ our present methoq significantly saves mucrih [4], is removed. As such, the computation time will improve signif-
computation time in the numerical integrations. icantly.

Fig. .6 compares the convergence rate of the residue term in [BC]’A program written in MATLAB 5 is used to implement the algo-
which is duplicated as follows: rithm for the microstrip dispersion problem. The quasi-static effective
N N . permittivity is computed as an initial guess and the Newton method
20 (er - Gf(i) To1 (Wina) is used to find the root of the characteristic equation representing the
/D W, dominant mode. The effective dielectric constant of a microstrip line of
aspect rati@W,,,/H = 1 was determined for different values of the

with our proposedZ;; . Here,v is taken as ten and this comparison isatio H/)o. Table | summarizes the results obtained from this paper
done on the basis that}; and (10) occupy the same matrix elemenand those presented in [3] and [10]. Here, five basis functions are taken

da (20)
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Scattering Matrices Representing the Transformations
Fig. 6. Comparison ofZ2* and (10).v = 10, p = 10, ¢ = 8, Between Modal Bases in Rectangular Waveguide
(Ww/H) = (1/2),andf = 11.8 GHz (dashed—dotted line: for (10), 9 9

solid-line: our proposed methad;z). A. Morini, T. Rozzi, and L. Zappelli

TABLE |

EFFECTIVE DIELECTRIC-CONSTANT COMPARISON WITH ey = 8, Abstract—The excitation of hybrid modes by discontinuities in rect-

2W.,./H = 1,andu, =1

H

angular waveguide can often be decomposed into separate LSE/LSM or
TE/TM mechanisms, so that each component can be analyzed with the

e This work (3] [10] most suitable modal base. Correct interfacing, however, is required. We
0.005 54678 54678 | 5.4752 report the scattering matrices representing all the possible transforma-
0.05 6.1274 6.1275 | 6.1316 tions of modal bases in rectangular waveguide. Such matrices provide an

0.1 6.7582 6.7580 | 6.7572 useful tool to simulate complex circuits made up of components strongly

0'3 7'661 7'6614 7.6551 interacting, without requiring the use of a common modal base for the

’ . . . characterization of each element. Since the transformation matrices can

0.7 7.9133 7.9139 | 7.9151 easily include pieces of transmission lines, their use does not require any

1.0 7.9529 7.9529 | 7.9556 additional computation effort.

Index Terms—Mode matching, rectangular waveguides.

for both J. and.J,. The agreement between this paper and that pre-
sented in [3] is excellent. The total time taken to compute the effec-
tive dielectric constant for the case Hf/A, = 1is 4 s on a Pentium
400-MHz personal computer.

|. INTRODUCTION

The electromagnetic (EM) field into a rectangular waveguide can be
expanded into three different sets of modes, nart&lgnd E types
with respect tak, ¥, andz (the latter are the classical TE/TM modes).
However, although in principle any one is equivalent to another, in prac-
In this paper, the Sonie-Schafheitlin integration formula and theal use, the analysis and computation effort required to characterize
sampling theorem have been integrated into the conventional spg@nodimensional discontinuities, such as T/Y-junctions, inductive or
tral-domain method to form an efficient and fast convergent hybrighpacitive posts and windows, bends, tapers, and so on (see Fig. 1) is
method. Closed-form asymptotic integrals are first derived without igtrongly reduced when the most appropriate set is used [1]. The latter
troducing any numerical pathologies and complexities. Numerical fig-the one whose modes are derived from two potentElsatd E)
sults obtained from this approach agree very well with those reportggrallel to the axis of the discontinuity (that is, the one with respect to
in the literature. A substantial reduction in CPU time is also achieveghich the discontinuity is uniform). As a consequence, the complete
using this formulation. analysis of the discontinuity can be performed considering separately
the two families of modesE andH), as not being coupled at all by
the discontinuity.
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